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abstract: Habitat heterogeneity plays a key role in the dynamics
and structures of communities. In this article, a two-species meta-
population model that includes local competitive dynamics is ana-
lyzed to study the population dynamics of two competing species in
spatially structured habitats. When local stochastic extinction can be
ignored, there are, as in Lotka-Volterra equations, four outcomes of
interspecific competition in this model. The outcomes of competition
depend on the competitive intensity between the competing pairs.
An inferior competitor and a superior competitor, or two strongly
competing species, can never stably coexist, whereas two weak com-
petitors (even if they are very similar species) may coexist over the
long term in such environments. Local stochastic extinction may
greatly affect the outcomes of interspecific competition. Two com-
peting species can or cannot stably coexist depending not only on
the competitive intensity between the competing pairs but also on
their precompetitive distributions. Two weak competitors that have
similar precompetitive distributions can always regionally coexist.
Two strongly competing species that competitively exclude each other
in more stable habitats may be able to stably coexist in highly het-
erogenous environments if they have similar precompetitive distri-
butions. There is also a chance for an inferior competitor to coexist
regionally or even to exclude a superior competitor when the superior
competitor has a narrow precompetitive distribution and the inferior
competitor has a wide precompetitive distribution.
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The competitive exclusion principle is a logical conclusion
of Gause’s experiments ([1934] 1964) and of Lotka-
Volterra equations (Volterra [1926] 1931; Lotka 1932),
which states that if two species occur together without
niche differentiation, then one competing species will
eliminate or exclude the other. Now, competitive exclusion
has readily been accepted as an obvious principle and has
gained an axiomatic status (Ekschmitt and Breckling
1994). However, the competitive exclusion principle im-
mediately raises a paradox when applied to ecological com-
munities (Hutchinson 1961). A generalized statement of
competitive exclusion principle is that n species cannot
coexist on fewer than n resources, or limiting factors (e.g.,
MacArthur and Levins 1964; Levins 1968; Tilman and Kar-
eiva 1997). In contrast, a given habitat, such as a prairie
or a lake, may contain hundreds of species, but the number
of limiting resources—nutrients, light, space, and so
forth—is relatively small, likely fewer than a dozen. This
raises the question, when is the competitive exclusion prin-
ciple valid and when is it not applicable? Since then, ex-
tensive hypotheses have been developed to explain the
phenomena that many similar species persistently coexist
in nature in spite of the validity of the exclusion principle.

Environmental fluctuations and unpredictable distur-
bances have been considered important factors affecting
the properties of communities such as species composi-
tion, diversity, and niche overlap. It is argued that com-
petition only structures communities at equilibrium,
whereas environmental fluctuations and unpredictable dis-
turbance would disrupt equilibria; prevent consistent ef-
fects of competition; and lead to ecological convergence,
high niche overlap, and coexistence of many similar species
(Hutchinson 1961; Wiens 1977; Hubbell 1979; Huston
1979; Connell 1980; Hubbell and Foster 1986; Ricklefs
1987). Ebenhoh (1994) showed in a model on phytoplank-
ton communities that under conditions of pulsing limited
resources, a large number of species may coexist and that
the community is still open for invasions. According to
this idea, there is no limit to the ecological similarity of
coexisting species, as long as the species conform to a
“trade-off condition” for growth parameters, which en-
ables temporal organization of the competing species.
However, after they reexamined the roles of harshness and
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environmental fluctuations, Chesson and Huntly (1997)
proved that harshness alone does not lessen the impor-
tance of species interactions or limit their role in com-
munity structure, and fluctuations in environmental con-
ditions only favor coexistence when fluctuations create
spatial or temporal niche opportunities.

In recent years, metapopulation theories have been
applied to interspecific competition, predicting that en-
vironmental heterogeneity may effectively support long-
term coexistence of very similar species in model com-
munities (Levins and Culver 1971; Slatkin 1974; Hanski
1983; Taneyhill 2000). Metapopulation dynamics is also
by definition a stochastic process since the extinctions and
recolonizations that form the two fundamental driving
forces both involve chance events (Taneyhill 2000). The
classic two-species metapopulation model (Slatkin 1974)
assumes that local competitive exclusion rates in doubly
occupied patches are constants, independent of their local
density. So, it gives an unfair advantage to the species that
happens to be regionally rarer. As Hanski (1999) pointed
out, such models do not incorporate the usual situation
in nature, where, if two species are really identical, the
species to arrive first at a habitat patch should have a better
chance of winning the patch than the later-arriving species
because the first species will usually enter into local com-
petition with a higher initial local abundance. Therefore,
the regionally more common species should win more
patches in local competition because it is more likely to
arrive first at a given patch.

The goal of this article is to explore the competition
dynamics of two competing species within regional hab-
itats. The model we use is also based on the classic meta-
population model of two competing species (Slatkin 1974;
Hanski 1983; Taneyhill 2000). We take the local compet-
itive effects, expressed as functions of the two competing
species’ regional distributions, into consideration and ex-
amine the competitive dynamics in regional habitats. First,
we consider a simple case that the local stochastic extinc-
tion can be ignored. The results show that the outcomes
of competition in fragmented habitats depend on the com-
petition intensity between the two competing pairs. Then,
we analyze the competing dynamics within the true me-
tapopulation model. The results show that local stochastic
extinction may greatly affect the outcome of species com-
petition. The analysis explains when two similar species
exclude each other from regional habitats and when two
completely competing species can stably coexist. The anal-
ysis also shows that the exclusion principle is not always
valid in regional habitats.

The Model and Its Predictions

The model is based on the classic two-species metapop-
ulation model constructed by Slatkin (1974). Let p0, p1, p2,

and p3 be the fractions of local patches that are occupied
by neither of the species, species 1 alone, species 2 alone,
and both species together. Let m1 and m1 be the rates of
colonization of species 1 to an empty habitat and a habitat
occupied by species 2, respectively. We assume that the
propagules are equally likely to come from any occupied
habitat. Let �1 and e1 be the extinction rates of species 1
caused by local stochastic extinction and by competitive
effects of species 2, respectively. Colonization rates m2 and
m2 and extinction rates �2 and e2 are defined in the same
way.

The dynamics of the two competing species in a doubly
occupied patch can be roughly described by Lotka-Volterra
(Volterra [1926] 1931; Lotka 1932) equations or similar
competition models (Taneyhill 2000). So, the competitive
displacement rate in any one doubly occupied patch is
correlated not only to the properties of the two competing
species but also to their initial local density. For two species
with comparable competition abilities, the one with higher
initial local abundance will have a better chance to win
the doubly occupied patch than its competitor. In other
words, the competitive extinction rate of a species in a
doubly occupied patch is negatively related with its local
abundance and positively correlated with its competitor’s
local abundance. However, in fact, it is impossible for us
to know the individual number of the two competitive
species in any one doubly occupied patch. Instead, we use
the assumption, which seems true in nature, that, because
of emigration and colonization, species with wide distri-
butions tend to be locally more abundant than species
with narrow distributions (Hanski 1982, 1999; Brown
1984; Lawton 1993; Hanski and Gyllenberg 1997). Because
of the positive relationship between a species’ distribution
and its local abundance and the positive relationship be-
tween the local abundance and its competitor’s local com-
petitive extinction rate, a positive relationship between a
species’ distribution and its competitor’s average local
competitive extinction rate also exists. In this case, the
average local competitive extinction rate of a species in
doubly occupied patches will be negatively correlated to
the total proportions of the occupied patches by itself and
positively correlated with the total proportions of the oc-
cupied patches of its competing species ( ). So,Y p p � pi i 3

the average displacement rates of the two competing spe-
cies in doubly occupied patches should be a function of

and , denoted as e1(Y1, Y2) andY p p � p Y p p � p1 1 3 2 2 3

e2(Y1, Y2). When the total fraction of the occupied patches
by a species is small compared with that of the other
species, the average local abundance of the former species
in doubly occupied patches is relatively small and that
species is prone to be excluded. When the total fraction
of the occupied patches by a species is relatively large, the
average local abundance of the species in doubly occupied
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patches is large and its competitor is likely to be excluded
rapidly.

Based on this argument, we get the deterministic equa-
tions for this system

dp0 p � (m Y � m Y )p � � p � � p , (1a)1 1 2 2 0 1 1 2 2dt

dp1 p m Y p � m Y p1 1 0 2 2 1dt

� [e (Y , Y ) � � ]p � � p , (1b)2 1 2 2 3 1 1

dp2 p m Y p � m Y p2 2 0 1 1 2dt

� [e (Y , Y ) � � ]p � � p , (1c)1 1 2 1 3 2 2

dp3 p m Y p � m Y p1 1 2 2 2 1dt

� [e (Y , Y ) � e (Y , Y ) � � � � ]p . (1d)1 1 2 2 1 2 1 2 3

The equations have the similar form as the classic meta-
population model for interspecific competition (Slatkin
1974). The only difference is that we assume that the av-
erage local competitive displacement rates are the func-
tions of the total fractions of the occupied patches of each
competing species. To discuss the behavior of the mod-
el, we should write out the forms of ande (Y , Y )1 1 2

explicitly. However, because there is no widelye (Y , Y )2 1 2

accepted model for the distribution–local abundance re-
lationship (Hanski 1999) and the average time to local
competitive exclusion for two species with different initial
abundance is also very complicated, it is unlikely that there
would be widely acceptable forms of ande (Y , Y )1 1 2

. In the following sections, we will consider twoe (Y , Y )2 1 2

simple forms of and to discuss the be-e (Y , Y ) e (Y , Y )1 1 2 2 1 2

havior of equations (1).

An Analytical Model

To begin our analysis, we first consider a simple case that
the local stochastic extinction can be ignored (� p1

) as well as a simple form of and� p 0 e (Y , Y )2 1 1 2

. Let be the extinction rate of species 1 and0e (Y , Y ) e2 1 2 1

be the extinction rate of species 2 in a doubly occupied0e 2

patch where the two competing species have the same
initial local density. We assume that the average local ex-
tinction rate of a competing species is linearly correlated
with its competitor’s distribution. Let , , and be the0 0 0p p p1 2 3

specific values of p1, p2, and p3, respectively, which will
confirm that when and —the0 0 0 0 0 0Y p p � p Y p p � p1 1 3 2 2 3

specific total fraction of habitats occupied by species 1 and
2—the two species have the same average abundance in

doubly occupied patches. In other words, when species 1
has the regional distribution and species 2 has the0Y1

regional distribution , species 1 will have the average0Y2

local competitive extinction rate and species 2 will have0e1

the average local competitive extinction rate in doubly0e 2

occupied patches. When and , there are0 0Y 1 Y Y ! Y1 1 2 2

and . When and0 0 0e (Y , Y ) ! e e (Y , Y ) 1 e Y ! Y1 1 2 1 2 1 2 2 1 1

, there are and . In this0 0 0Y 1 Y e (Y , Y ) 1 e e (Y , Y ) ! e2 2 1 1 2 1 2 1 2 2

case, and can be written out ase (Y , Y ) e (Y , Y )1 1 2 2 1 2

and . The system0 0 0 0e (Y , Y ) p e Y /Y e (Y , Y ) p e Y /Y1 1 2 1 2 2 2 1 2 2 1 1

equations (1) can be written as

dp0 p �(m Y � m Y )p , (2a)1 1 2 2 0dt

0dp e p Y1 2 3 1p m Y p � m Y p � , (2b)1 1 0 2 2 1 0dt Y1

0dp e p Y2 1 3 2p m Y p � m Y p � , (2c)2 2 0 1 1 2 0dt Y2

0 0dp e Y e Y3 1 2 2 1p m Y p � m Y p � � p . (2d)1 1 2 2 2 1 30 0( )dt Y Y2 1

The best way to examine the properties of this model is
to find all the equilibrium points of (2a)–(2d) that have
acceptable values for the pi ( and ) and top ≥ 0 Sp p 1i i

test the stability of each of the equilibrium points. Ob-
viously, p0 is a decreasing function of time, asymptotically
approaching . Further, it is easy to find that therep p 00

are three nontrivial equilibrium solutions of the system
( ):p̂ p 00

ˆ ˆ ˆp p 1, p p 0, p p 0; (3a)1 2 3

ˆ ˆ ˆp p 0, p p 1, p p 0; (3b)1 2 3

2f f2 11 �( )
m m2 1

p̂ p ,1 2 2f f f f f f1 2 1 2 1 21 � 3 � �( ) ( )
m m m m m m1 2 1 2 1 2

2f f1 21 �( )
m m1 2

p̂ p , (3c)2 2 2f f f f f f1 2 1 2 1 21 � 3 � �( ) ( )
m m m m m m1 2 1 2 1 2

f f f f1 2 1 21 � � �
m m m m1 2 1 2

p̂ p ,3 2 2f f f f f f1 2 1 2 1 21 � 3 � �( ) ( )
m m m m m m1 2 1 2 1 2

and where and . We interpret equa-0 0 0 0f p e /Y f p e /Y1 1 2 2 2 1

tions (3a) as species 1 being present in the region alone,
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Table 1: Stability conditions of different equilibrium solutions

p1 p2 pc

0e 2 01 Y1m2

0e1 01 Y2m1

;
0 0e e1 10 0! Y ! Y2 1m m1 2

Note: Equilibrium solutions refer to equations (3a)–(3c); p1 p boundary

equilibrium point of species 1 present alone; p2 p boundary equilibrium

point of species 2 present alone; pc p internal equilibria of the coexistence

of two competing species.

equations (3b) as species 2 being present in the region
alone, and equations (3c) as the coexistence of the two
species. The stability of the three equilibrium points can
be found directly (table 1). The stable condition at the
internal equilibrium point corresponds to the unstable
conditions of two boundary equilibrium points.

When and or and0 0 0 0 0 0e /m ! Y e /m 1 Y e /m 1 Y1 1 2 2 2 1 1 1 2

, there is no internal equilibrium point and only0 0e /m ! Y2 2 1

one boundary equilibrium point is stable. In these cases,
one species invariably outcompetes the other in all the
regional habitats. The first two inequalities indicate that
species 1 will drive species 2 to extinction regionally and
occupy all patches, while the last two inequalities indicate
that species 2 will be the winner.

When and , both of the boundary0 0 0 0e /m 1 Y e /m 1 Y1 1 2 2 2 1

equilibria are stable and the internal equilibrium point is
unstable. Which of these two outcomes, either species 1
or 2 alone, is actually attained is determined by the initial
densities: the species that has the initial advantage will
drive the other species to extinction. This case may occur
in situations of two strongly interspecific competitors.

Finally, when and , the interior0 0 0 0e /m ! Y e /m ! Y1 1 2 2 2 1

equilibrium point is stable and the two boundary equilib-
ria are unstable. In this case, two competing species can
coexist stably in regional habitats. Obviously, the stability
of the coexistence and the fraction of doubly occupied
patches, if there is coexistence, are determined by the pa-
rameters of the system, not by initial conditions. Increasing
colonization rate (mi) enlarges the stable region of interior
equilibrium and the fraction of doubly occupied patches.
On the contrary, increasing local competitive exclusion
rate ( ) reduces the fraction of doubly occupied patches0ei

and the stable region of interior equilibrium.

An Alternative Approach to Local Dynamics

Although the equilibrium points of the analytical model
(eqq. [2]) can be solved directly, we had to introduce two
new parameters, and . To avoid this disadvantage,0 0Y Y1 2

we consider an alternative form of ande (Y , Y )1 1 2

). We still define as the extinction rate of species0e (Y , Y e2 1 2 1

1 and as the extinction rate of species 2 in a doubly0e 2

occupied patch where the two competing species have the
same initial local density. A further assumption is that the
two competing species have the same reproduction and
dispersal form. So, they have the same regional distri-
bution–local abundance relationship. We show that

and0 0e (Y , Y ) p 2e Y /(Y � Y ) e (Y , Y ) p 2e Y /(Y �1 1 2 1 2 1 2 2 1 2 2 1 1

. The meaning of the two forms is obvious. For ex-Y )2

ample, for two competing species, when the two species
have a similar distribution, they will have similar average
local abundance. Then species 1 will have an average local
competitive extinction rate and species 2 will have an0e1

average local competitive extinction rate in doubly oc-0e 2

cupied patches. When the two species have very different
regional distributions, the species with the small distri-
bution will have low local abundance and a higher local
extinction rate, while its competitor will have a very low
local extinction rate. Still, we ignore the local stochastic
extinction, and the system of equations (1) can be written
as

dp0 p �(m Y � m Y )p , (4a)1 1 2 2 0dt

0dp 2e p Y1 2 3 1p m Y p � m Y p � , (4b)1 1 0 2 2 1dt (Y � Y )1 2

0dp 2e p Y2 1 3 2p m Y p � m Y p � , (4c)2 2 0 1 1 2dt (Y � Y )1 2

0 0dp 2p (e Y � e Y )3 3 1 2 2 1p m Y p � m Y p � . (4d)1 1 2 2 2 1dt (Y � Y )1 2

As in the analytical model (eqq. [2]), the best way to
discuss the behavior of the equations is to find all the
equilibrium points. However, it is not practical to solve
equations (4) for internal equilibria. Following Slatkin
(1974), we can set one species at equilibrium in the region,
in the absence of the other, and ask whether the second
can invade.

As in the previous model, for all equilibria, . Thatp̂ p 00

is, at equilibrium, all patches will be occupied. Then, we
have . So, only two of the three equilibriaˆ ˆ ˆp � p � p p 11 2 3

, , and are independent of each other. It is easy toˆ ˆ ˆp p p1 2 3

find that there are two boundary equilibrium points
( ):p̂ p 00

ˆ ˆ ˆp p 1, p p 0, p p 0; (5a)1 2 3

ˆ ˆ ˆp p 0, p p 1, p p 0. (5b)1 2 3

We will discuss the stability of the two boundary equi-
librium points and argue whether either is stable. If either
boundary point is unstable, there is at least one stable
internal equilibrium point. It is easy to prove that the
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Figure 1: The outcomes of the competition generated by the two-species competition model (eqq. [4]). The vectors refer to the directions of
competition, and the solid circles show stable equilibrium points, where and .0 0� �p p 1 � 1 � (2e /m ) p p 1 � 1 � (2e /m )10 2 2 20 1 1

stability condition of the boundary equilibrium point at
which only species 1 is present (eq. [5a]) is

0e 12
1 . (6a)

m 22

The boundary equilibrium point at which only species 2
is present (eq. [5b]) is

0e 11
1 . (6b)

m 21

When neither of the two expressions of (6a) and (6b) can
be satisfied, there is at least one stable internal equilibrium
point, and the stability conditions of the internal equilib-
rium points are

0 0e 1 e 11 2
! , ! . (6c)

m 2 m 21 2

To further understand the behavior of the model, we
use the zero isoclines to illustrate the above results (fig.
1). For simplification, we set in equations (4).p p 00

Therefore, at equilibrium, there are only two independent
equations of the four equations. As in the Lotka-Volterra
model of interspecific competition (Begon et al. 1996),
there are four different ways in which the two zero isoclines
can be arranged relative to one another, and the outcomes
of competition will be different in each case. The different
cases can be defined and distinguished by the parameters
of the system. We will discuss them respectively.

In figure 1A, and . In this case,0 0e /m ! 1/2 e /m 1 1/21 1 2 2

species 1 is a strong interspecific competitor, and species
2 is a weak interspecific competitor. The two species can
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never stably coexist because species 1 will displace species
2 regionally and occupy all patches.

In figure 1B, and . Under these0 0e /m 1 1/2 e /m ! 1/21 1 2 2

conditions, the situation is reversed, and species 2 will
exclude species 1 from all patches.

In figure 1C, and . Both species0 0e /m 1 1/2 e /m 1 1/21 1 2 2

are strong competitors. Though there is one internal equi-
librium point, the internal equilibrium point is unstable.
The outcomes of the competition that is actually attained
are determined by the initial densities. The species that
has the initial advantage will drive the other species to
extinction regionally and occupy all the patches.

Finally, in figure 1D, and . In this0 0e /m ! 1/2 e /m ! 1/21 1 2 2

case, the interior equilibrium point is stable, and the two
boundary equilibria are unstable. Each species has little
competitive effect on the other species. Two competing
species can stably coexist in regional habitats, in spite of
their initial densities. These inequalities prove the general
conditions for the stable coexistence of two competing
species in spatially constructed but locally stable habitats.

The above two model approaches to local dynamics,
equations (2) and equations (4), have similar behaviors.
Both give out the conditions for regional coexistence of
two competing species. However, the coexistence condi-
tions in the second approach are stricter than those of the
analytical model. For example, for two similar species,
there are (because ,0 0 0 0 0 0Y p Y 1 1/2 Y p p � p Y p1 2 1 1 3 2

, and ). Two competitive species0 0 0 0 0p � p p � p � p p 12 3 1 2 3

may coexist stably in the analytical model, but they may
not be able to stably coexist in the general approach model.

The True Metapopulation Approach

To further our study and to make a comparison with orig-
inal work (e.g., Slatkin 1974; Hanski 1983; Taneyhill 2000),
we take the local stochastic extinction into consideration.
We discuss one form of the above approaches to local
competition dynamics. It is easy to prove that the other
form have the same modeling behavior. Let e (Y , Y ) p1 1 2

and and the system0 02e Y /(Y � Y ) e p 2e Y /(Y � Y )1 2 1 2 2 2 1 1 2

equations (1) be written as

dp0 p �(m Y � m Y )p � � p � � p , (7a)1 1 2 2 0 1 1 2 2dt

0dp 2e p Y1 2 3 1p m Y p � m Y p � � � p � � p , (7b)1 1 0 2 2 1 1 1 2 3dt (Y � Y )1 2

0dp 2e p Y2 1 3 2p m Y p � m Y p � � � p � � p , (7c)2 2 0 1 1 2 2 2 1 3dt (Y � Y )1 2

0 0dp 2p (e Y � e Y )3 3 1 2 2 1p m Y p � m Y p � � (� � � )p . (7d)1 1 2 2 2 1 1 2 3dt (Y � Y )1 2

As in the classic metapopulation model (Slatkin 1974), the
internal equilibrium points cannot be solved analytically.
Here, following the methods used by Slatkin (1974) and
Hanski (1983), we discuss the stability of two boundary
equilibrium points and find whether there are stable in-
terior equilibrium points.

Since , only three equations arep � p � p � p p 00 1 2 3

independent in the above system model. The boundary
equilibrium point of species 2 can be written out directly:

� �2 2ˆ ˆ ˆ ˆp p , p p 0, p p 1 � , p p 0. (8)0 1 2 3m m2 2

Following Hanski (1983), the system linear differential
equations are

′ ′p p1 1d ′ ′p p A p , (9)2 2[ ] [ ]dt ′ ′p p3 3

where for , 1, 2, 3, and′ ′ ′ ′ˆp p p � p i p 0 p � p � p �i i i 0 1 2

. The matrix A has the coefficients′p p 03

ˆ ˆa p m p � � � m p ,11 1 0 1 2 2

a p 0,12

ˆa p m p � � ,13 1 0 2

ˆa p �(m � m )p ,21 2 1 2

ˆa p �m p ,22 2 2

0ˆ ˆ ˆa p m p � m p � m p � � � 2e ,23 2 0 2 2 1 2 1 1

ˆa p (m � m )p ,31 1 2 2

a p 0,32

0a p m p � � � � � 2e .33 1 2 1 2 1

The stability of the boundary equilibrium point of
species 2 is determined by the eigenvalues of A. Since

and , one of the eigenvaluesˆa p a p 0 a p �m p12 32 22 2 2

of A is real and negative. Thus, the local stability of the
boundary equilibrium point depends on two conditions:

a � a ! 0, (10a)11 33

a a ! a a . (10b)13 31 11 33

Because of the complex forms of equations (10), it is
difficult to further the discussion on the criteria for the
invasibility directly. Here, we consider two special cases:
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two like species ( , ,m p m p m m p m p m � p1 2 1 2 1

, and ) and two species with the same0 0 0� p � e p e p e2 1 2

colonization rate ( , ) but dif-m p m p m m p m p m1 2 1 2

ferent local extinction rate.
It is easy to prove that, for each of the above two cases,

it is always true that . That is, equation (10a)a � a ! 011 33

can always be satisfied. So, for the two cases below, we
just need to discuss equation (10b). If (10b) is satisfied,
the boundary is stable and species 2 can prevent species
1 from invading. If (10b) is not satisfied, the boundary
point is unstable and species 1 can invade the region oc-
cupied by species 2.

Two Like Species. Equation (10b) reduces to

m
02e � m 1 � 2 � . (11)( )m

When the local stochastic extinction rate is very low, much
less than that of the local competitive displacement rate,
equation (11) reduces to . This is just the result in02e 1 m

the “alternative approach model” for two like species.
Whether a species can invade its competitor’s habitat de-
pends on the intensity of interspecific competition only.
When local stochastic extinction rate is larger than local
competitive displacement rate ( ), equation (11) re-0� 1 e
duces to . Because it is always true0e � m 1 �[1 � (m/m)]
that and , the equation can never be sat-00 ! m ! m e ! m

isfied. In this case, a species can always invade the region
occupied by its competitor, and the two competing species
can stably coexist. If , the outcome of compe-00 ! � ! e
tition is related not only to the interspecific competitive
intensity of the competing pairs but to other parameters
of the system (e.g., local stochastic extinction rate and the
colonization ability). The stability region of boundary
equilibrium point decreases with the increasing of local
stochastic extinction rate. In other words, local stochastic
extinction promotes regional coexistence of like species.
In this case, two intrinsically rare like species are more
likely to coexist than two intrinsically common like species.
This is different from Hanski’s (1983) conclusion.

Two Species with the Same Colonization Rate. Equation
(10b) reduces to

0ˆ ˆ(� � � � mp )(mp � � � � � 2e )2 1 2 2 1 2 1

ˆ� 4m� p 1 0. (12)2 2

To understand the effects of local stochastic extinction on
the dynamics of regional competition, it is convenient to
define a new variable J:

0ˆ ˆ ˆJ p (� � � � mp )(mp � � � � � 2e ) � 4m� p .2 1 2 2 1 2 1 2 2

It is easy to prove that J is an increasing function of
�1 [ ] and a decreasing function of0�J/�� p 2(� � e ) 1 01 1 1

�2 ( since , ,�J/�� ! 0 F�J/�� F ! 0 F�J/�� F ! 02 2 � p0 2 � pm2 2

and ). Because and , it2 2� J/�� ! 0 0 ≤ � ≤ m 0 ≤ � ≤ m2 1 2

is necessary for us to discuss the value of J at the following
four points

0J(� p 0, � p 0) p m(�m � 2e ), (13a)1 2 1

0J(� p m, � p 0) p (m � m)(m � m � 2e ) 1 0, (13b)1 2 1

0J(� p 0, � p m) p �m(m � 2e ) ! 0, (13c)1 2 1

J(� p m, � p m) p 0. (13d)1 2

Equation (13a) is just the case of the above alternative
approach model, and the necessary and sufficient condi-
tion for is . The four equa-0J(� p 0, � p 0) 1 0 m ! 2e1 2 1

tions indicate that local stochastic extinction has an
important influence on the outcomes of two-species com-
petition. The invasibility of species 1 to a habitat occupied
by species 2 decreases with increasing �1 and increases with
increasing �2. A species may be a competition winner if it
has a low stochastic extinction rate but will be regionally
excluded by its competitor if it has a high local stochastic
extinction rate, while its competitor has a low local sto-
chastic extinction rate. Because a species’ precompetitive
distribution ( ; , 2) decreases with increasing �ip̂ i p 1i

( , 2), it is difficult for a species with narrow distri-i p 1
bution to invade the region occupied by a competing spe-
cies with wide distribution. It is obvious that a criterion
should exist to set the boundary between the stable and
unstable region of the boundary equilibrium.

By reversing the subscripts in (12), we get the stability
condition for the boundary point of species 1:

0ˆ ˆ(� � � � mp )(mp � � � � � 2e )1 2 1 1 1 2 2

ˆ�4m� p 1 0. (14)1 1

By solving equations (12) and (14), we can get the criteria
that the two species can stably coexist when they com-
petitively exclude each other from regional habitat. How-
ever, it is difficult to get a simple form of the criteria.
Instead, the ways equations (12) and (14) set the boundary
between the boundary equilibrium point region and in-
terior equilibrium region in the parameter space is illus-
trated in figure 2. Obviously, the competition intensity
between the two competing pairs as well as their local
stochastic extinction have important effects on the out-
comes of regional competition. Two weak competitors
( and ) can always regionally coexist if they0 0m 1 2e m 1 2e1 2



Competition and Coexistence in Regional Habitats 505

Figure 2: The stability of boundary equilibria generated by equations (12) and (14). A, Competition between two strongly competitive species,
and . B, Competition between two weak competitors, and . C, Competition between an inferior competitor and a0 0 0 0m ! 2e m ! 2e m 1 2e m 1 2e1 2 1 2

superior competitor, and . In region I, the boundary equilibrium is stable, and in region II, the boundary equilibrium0 0 ∧m ! 2e m 1 2e p p 1 � (� /m)1 2 1 1

is stable. In region III, both equilibria are stable, and in region IV, both boundary equilibria are unstable (two-species regional∧p p 1 � (� /m)2 2

coexistence).

have not much different local stochastic extinction. Two
strongly competing species ( and ) that0 0m ! 2e m ! 2e1 2

competitively exclude each other in a stable environment
may be able to stably coexist in highly heterogenous hab-
itats if they have similar local stochastic extinction rates.
There is also a chance for an inferior competitor to re-
gionally coexist or to exclude a superior competitor when
the superior competitor has a high local stochastic ex-
tinction rate and the inferior competitor has a low local
stochastic extinction rate.

Discussion

The classic two-species metapopulation model (Slatkin
1974) assumes that the local competitive exclusion rates
of two competing species are constants. This gives unfair
advantage to the species that happens to be regionally rarer

(Hanski 1999). To overcome this shortcoming, Hanski
(1983) assumed that a species extinction probability de-
creases with the increasing of the species regional abun-
dance. Hanski’s (1983) rescue effect is more reasonable
for local stochastic extinction events than for local com-
petitive exclusion. In Taneyhill’s (2000) article, for ex-
ample, a distinct expression of rescue effects on local com-
petitive exclusion is assumed. In that model, when p2 is
very little (approaching zero), the competitive exclusion
rate of species 2 by species 1 is �21, and it should be at its
maximum value. At the same time, species 1 still has a
competitive extinction rate of . It is difficult� (1 � q p )12 1 1

to imagine how a nearly extinct species can produce such
large competitive effects.

The aim of this study was an attempt to take the local
competition effects into the two-species metapopulation
model. By assuming that a species’ local density is posi-
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tively related to its regional abundance, the local com-
petitive displacements in doubly occupied patches are ex-
pressed by the system parameters. The difference between
this model and Hanski’s (1983) rescue effects is obvious.
An important assumption in Hanski’s (1983) model is that
high migration rates from existing large populations may
additionally “rescue” small populations from extinction
(Hanski and Gyllenberg 1997). So, it is mainly about how
a species’ regional distribution influences its local extinc-
tion. In this model, it is assumed that a species’ local
competitive extinction both depends on the competitive
intensity between the two competitors (as in classic mod-
els) and on their local densities (expressed by two-species
regional abundance). So, the two modeling approaches
have much different ecological meaning. In this model,
we studied two cases: competition in spatially fragmented
habitats (without local stochastic extinction) and a true
metapopulation model.

In the cases where local stochastic extinction can be
ignored, we first assumed that the average local extinction
rate of a species is proportional to its competitor’s dis-
tribution. The factors and can be determined in the0 0Y Y1 2

following way. First, we should find out the average car-
rying capacity of the local patches. Then, by using the
distribution-abundance relationship (e.g., Hanski and Gyl-
lenberg’s [1997] DA curve), we can find the values of

and , which will confirm that there are, on average,0 0Y Y1 2

equal abundance of the two species in doubly occupied
patches. The advantage of the assumption is that all the
equilibrium points of the model can be solved analytically.
The disadvantage is that there is no widely accepted
distribution-abundance relationship, which thus creates
difficulty in determining the values of and . Then,0 0Y Y1 2

to overcome the above disadvantage, we assumed another
form of local competitive displacement rate of e (Y , Y )1 1 2

and . Though the internal equilibrium pointe (Y , Y )2 1 2

could not be solved directly, we still could analyze the
behavior of the model by discussing the character of the
boundary equilibrium points.

The two different models have similar behavior. There
are, as in the Lotka-Volterra model, four outcomes of the
competition of two competing species in the model. Two
competing species can or cannot coexist in regional hab-
itats depending on the intensity of competition. Two
strongly competitive species (with high locally competitive
displacement rates or low invasion rates or both) can never
stably coexist, while two weakly competitive species (with
low locally competitive displacement rates and high in-
vasion rates) can coexist regionally over the long term.
Increasing the invasion abilities of each species to its com-
petitor’s patches (m1 and m2) or decreasing the locally com-
petitive displacement rates ( and ) in doubly occupied0 0e e1 2

patches will favor coexistence.

When local stochastic extinction cannot be ignored, we
analyzed a true metapopulation model. Local stochastic
extinction greatly influences the dynamics of two com-
peting species. The competition outcomes of two similar
species are related not only to their competitive intensity
but also to their precompetitive distribution (expressed as
a decreasing function of local stochastic extinction in this
model). For two similar species, two weak competition
pairs can always stably coexist, while two strong compe-
tition pairs can only regionally coexist in highly hetero-
genous habitats (with a high local stochastic extinction
rate). Habitat heterogeneity promotes coexistence of like
species. In this case, two intrinsically rare similar species
are more likely to coexist than two intrinsically common
like species. This is different from the conclusions of Han-
ski’s (1983) model.

A species’ precompetitive distribution largely deter-
mines whether it will be successful in interspecific com-
petition. The invasibility of a species to a habitat occupied
by its competitor decreases with the increase of its local
stochastic extinction rate. Competitive exclusion of species
1 by species 2 is more likely to occur when species 2 has
the potential to be more abundant than species 1. In this
case, a common species in the region has a competitive
advantage over a rare species. This is in agreement with
Hanski’s (1983) result but is different from Slatkin’s (1974)
result. The difference comes from the fact that Slatkin’s
(1974) model assumed that local competitive exclusion
rate of two competing species is independent of their local
density. In this model, we assumed that the competitive
exclusion of a species decreases with increases in its local
density (expressed as an increasing function of its regional
abundance and a decreasing function of its competitor’s
regional abundance). So, the regionally common species
has a better chance of winning in local competition. There
is also a chance for an inferior competitor to regionally
coexist with or exclude a superior competitor when the
superior competitor has a high local stochastic extinction
rate and the inferior competitor has a low local stochastic
extinction rate.

The prediction of the competitive exclusion of two
strongly competing species in more stable habitats is con-
sistent with competitive exclusion principle that species
coexistence requires niche difference (Gause [1934] 1964;
Hutchinson 1959; Hardin 1960; MacArthur and Levins
1967; Begon et al. 1996). Similar species have similar dis-
tributions due to shared habitat requirements. However,
because of their highly competitive intensity, they are more
likely to exclude each other from local patches and thus
from regional habitat. This is different from the results of
our previous model (Wang et al. 2000) and the metapop-
ulation models (e.g., Slatkin 1974), in which two com-
pletely competing species can always coexist regionally.
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However, two weakly competitive species can stably co-
exist in regional habitats. This situation may occur when
the two competing species are sufficiently dissimilar or
when the local competitive displacement rates of the two
species are sufficiently low. For the second case, the co-
existence of two competing species in regional habitats
does not need a niche difference. These cases can always
be seen in higher plants and some marine invertebrates.
Although there is obviously competition among higher
plants (Harper 1977), competitive displacement always
takes a long time, even in a small local population (Hubbell
1979; Hubbell and Foster 1986). However, seeds of higher
plants can colonize patches that are a little far from the
maternal plants (Begon et al. 1996). In this case, com-
petition does not have an appreciable effect on properties
of communities such as species composition, diversity, and
niche overlap. It is consistent with the assumption that
niche differentiation is not an important mechanism of
coexistence in plant communities (Hubbell 1979; Aarssen
1983; Shmida and Ellner 1984; Hubbell and Foster 1986;
Silvertown and Law 1987; Mahdi et al. 1989; Goldberg and
Barton 1992; Laurie and Cowling 1994), although all green
plants have similar resource requirements (light, carbon
dioxide, and water) and the same mineral nutrients
(Grubb 1977). The coexistence in a local patch may be
transitory, but regional coexistence may be maintained
through immigration. The coexistence of very similar
species in regional habitats is a stable state. It is a dy-
namic equilibrium of locally competitive displacement and
recolonization.

The results that two similar species can regionally coexist
in heterogenous environments obviously invalidate the
competitive exclusion principle. The validity of competi-
tive exclusion principle, as well as of its theoretical im-
plications, is primarily confined to homogeneous envi-
ronments and to environments of restricted extent
(Ekschmitt and Breckling 1994). In heterogenous envi-
ronments, not only the competition intensity between two
competition pairs but also their colonization and local
stochastic extinction can produce large effects on two spe-
cies’ competing dynamics. Maybe that is why most of the
laboratory experiments support the principle, while many
empirical observations invalidate it. It is not surprising
that, when the habitats are artificially structured in lab-
oratory experiments, two originally excluded species may
stably coexist (Gotelli 1997). It is also possible that large
parts of classical ecological theory mainly apply to artificial
laboratory situations.
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